美国伊利诺伊理工学院电气工程硕士和荣誉博士、加拿大安大略理工大学工程与应用科学学院电气、计算机和软件工程学系教授,以及智能交通电气化和能源研究(STEER)小组主任。
编译 / Aaron 、曹锦
电动交通的形式已经越来越多样化。并在全球可持续发展的大背景下扮演着重要角色。从电动自行车、汽车到无人驾驶电动汽车、Robotruck,再到自动驾驶无人机,这些产品似乎都在显露着未来的某种趋势。
而来自加拿大安大略理工大学的Williamson教授认为,电动交通商业化的进一步成功,以及未来的全自动驾驶技术,将取决于电力电子技术的进步。
「这种技术在未来几年面临着许多挑战,特别是在电能存储系统的控制和智能充电系统的发展方面。」
智能管理系统性能的提高
电动汽车电池的续航里程焦虑和寿命有限的问题尤其令人担忧。目前,动力电池仍存在容量损失问题,这种问题在寒冷(0℃以下)和炎热天气(40℃以上)中,以及快速充电场景下显得尤为突出。
为解决这一问题,电力电子领域已将全部精力集中在车载电池能量管理领域。这种能量管理的目的是使智能电力电子转换技术(也称为有源电池平衡)在电池级实现电压均衡。这种方式可将行驶里程延长两到三倍,而且只会增加1%到2%的电池组成本。
Williamson表示,目前业内通常会通过电路拓扑实现创新,其方式是将电路板上的电感值最小化(一种称为减少部件转换器的方法)。未来几年可能还会有进一步的发展,使电池平衡更加高效和廉价。
为电池的「第二次生命」铺路
在使用8到10年之后,动力电池通常会因为容量下降而退役,当其寿命结束时,回收这些电池原材料似乎是大多数人能想到的解决方案。
但事实上,这些电池还可以应用于其他领域。耗尽的电池可以保留70%左右的容量,因此可能适用于微电网和智能电网中的固定存储等应用。
一些公司最近开展了一些项目,以检验这种电池「第二生命」解决方案的可行性。然而,废旧电池的降解行为仍然是一个相对未知的问题。
在电池的第一次生命和第二次生命中进行适当的监测,对于验证第二次生命解决方案的技术可行性至关重要。比如,如果将几个不同容量的旧电池串联起来形成第二生命模块,可用能量就可以大大增加。
再经过深入研究后,研究者们认为不同容量和化学成分的电池可以安全使用,而且相互之间不会影响性能。但要建立这样的系统,需要新的方法来控制每个已用电池的电流,以监测电池容量的实时消耗。
目前基于机器学习技术的自适应控制策略,可以更准确地估计容量,并有潜力成为游戏规则的改变者,即将多种电池集为一个电池,形成电池的第二生命模块。
极快充电站何时能够普及?
城市、郊区甚至偏远地区都需要为电动汽车充电,这意味着电力研究人员在充电基础设施方面面临着许多挑战,包括可再生能源和固定电池储能的结合。
商用电动汽车目前配备车载充电器,从墙上的交流插座获取输入电源。此时,电池组充电所需的能量转换是在车辆上完成的。